Supporting Limb Laminitis

Published:October 18, 2021DOI:


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Veterinary Clinics: Equine Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Baxter G.M.
        • Morrison S.
        Complications of unilateral weight bearing.
        Vet Clin North Am Equine Pract. 2008; 24 (ix): 621-642
        • Peloso J.G.
        • Cohen N.D.
        • Walker M.A.
        • et al.
        Case-control study of risk factors for the development of laminitis in the contralateral limb in Equidae with unilateral lameness.
        J Am Vet Med Assoc. 1996; 209: 1746-1749
        • van Eps A.
        • Collins S.N.
        • Pollitt C.C.
        Supporting limb laminitis.
        Vet Clin North Am Equine Pract. 2010; 26: 287-302
        • Wylie C.E.
        • Newton J.R.
        • Bathe A.P.
        • et al.
        Prevalence of supporting limb laminitis in a UK equine practice and referral hospital setting between 2005 and 2013: implications for future epidemiological studies.
        Vet Rec. 2015; 176: 72
        • Virgin J.E.
        • Goodrich L.R.
        • Baxter G.M.
        • et al.
        Incidence of support limb laminitis in horses treated with half limb, full limb or transfixation pin casts: a retrospective study of 113 horses (2000-2009).
        Equine Vet J Suppl. 2011; : 7-11
        • Levine D.G.
        • Richardson D.W.
        Clinical use of the locking compression plate (LCP) in horses: a retrospective study of 31 cases (2004-2006).
        Equine Vet J. 2007; 39: 401-406
        • Baxter G.M.
        Supporting limb laminitis.
        John Wiley and Sons, Inc., Hoboken (NJ)2017: 210-213
        • van Eps A.W.
        • Burns T.A.
        Are there shared mechanisms in the pathophysiology of different clinical forms of laminitis and what are the implications for prevention and treatment?.
        Vet Clin North Am Equine Pract. 2019; 35: 379-398
        • Redden R.F.
        Preventing laminitis in the contralateral limb of horses with non-weightbearing lameness.
        Clin Tech Equine Pract. 2004; 3: 57-63
        • Hood D.M.
        • Grosenbaugh D.A.
        • Mostafa M.B.
        • et al.
        The role of vascular mechanisms in the development of acute equine laminitis.
        J Vet Intern Med. 1993; 7: 228-234
        • Hood D.M.
        The mechanisms and consequences of structural failure of the foot.
        Vet Clin North Am Equine Pract. 1999; 15: 437-461
        • Hood D.M.
        The pathophysiology of developmental and acute laminitis.
        Vet Clin North Am Equine Pract. 1999; 15: 321-343
      1. van Kraayenburg FJ, Fairall N, Littlejohn A: The effect of vertical force on blood flow in the palmar arteries of the horse. In 1st international congress on equine exercise physiology, Cambridge, pp 144-54.

        • Hoffmann K.L.
        • Wood A.K.
        • Griffiths K.A.
        • et al.
        Doppler sonographic measurements of arterial blood flow and their repeatability in the equine foot during weight bearing and non-weight bearing.
        Res Vet Sci. 2001; 70: 199-203
        • Pietra M.
        • Guglielmini C.
        • Nardi S.
        • et al.
        Influence of weight bearing and hoof position on Doppler evaluation of lateral palmar digital arteries in healthy horses.
        Am J Vet Res. 2004; 65: 1211-1215
        • Hinckley K.A.
        • Fearn S.
        • Howard B.R.
        • et al.
        Near infrared spectroscopy of pedal haemodynamics and oxygenation in normal and laminitic horses.
        Equine Vet J. 1995; 27: 465-470
        • Gardner A.K.
        • van Eps A.W.
        • Watts M.R.
        • et al.
        A novel model to assess lamellar signaling relevant to preferential weight bearing in the horse.
        Vet J. 2017; 221: 62-67
        • van Eps A.W.
        • Belknap J.K.
        • Schneider X.
        • et al.
        Lamellar perfusion and energy metabolism in a preferential weight bearing model.
        Equine Vet J. 2021; 53: 834-844
        • Medina-Torres C.E.
        • Underwood C.
        • Pollitt C.C.
        • et al.
        Microdialysis measurements of lamellar perfusion and energy metabolism during the development of laminitis in the oligofructose model.
        Equine Vet J. 2016; 48: 246-252
        • Stokes S.M.
        • Bertin F.R.
        • Stefanovski D.
        • et al.
        The effect of continuous digital hypothermia on lamellar energy metabolism and perfusion during laminitis development in two experimental models.
        Equine Vet J. 2020; 52: 585-592
        • Pass M.A.
        • Pollitt S.
        • Pollitt C.C.
        Decreased glucose metabolism causes separation of hoof lamellae in vitro: a trigger for laminitis?.
        Equine Vet J Suppl. 1998; : 133-138
        • French K.R.
        • Pollitt C.C.
        Equine laminitis: glucose deprivation and MMP activation induce dermo-epidermal separation in vitro.
        Equine Vet J. 2004; 36: 261-266
        • Cassimeris L.
        • Engiles J.B.
        • Galantino-Homer H.
        Interleukin-17A pathway target genes are upregulated in Equus caballus supporting limb laminitis.
        PLoS One. 2020; 15: e0232920
        • Engiles J.B.
        • Galantino-Homer H.L.
        • Boston R.
        • et al.
        Osteopathology in the equine distal phalanx associated with the development and progression of laminitis.
        Vet Pathol. 2015; 52: 928-944
        • Cassimeris L.
        • Engiles J.B.
        • Galantino-Homer H.
        Detection of endoplasmic reticulum stress and the unfolded protein response in naturally-occurring endocrinopathic equine laminitis.
        BMC Vet Res. 2019; 15: 24
        • Prinz I.
        • Sandrock I.
        • Mrowietz U.
        Interleukin-17 cytokines: effectors and targets in psoriasis-a breakthrough in understanding and treatment.
        J Exp Med. 2020; 217: e20191397
        • Chan D.D.
        • Van Dyke W.S.
        • Bahls M.
        • et al.
        Mechanostasis in apoptosis and medicine.
        Prog Biophys Mol Biol. 2011; 106: 517-524
        • Thomason J.J.
        • McClinchey H.L.
        • Faramarzi B.
        • et al.
        Mechanical behavior and quantitative morphology of the equine laminar junction.
        Anat Rec A Discov Mol Cell Evol Biol. 2005; 283: 366-379
        • Thomason J.J.
        • Faramarzi B.
        • Revill A.
        • et al.
        Quantitative morphology of the equine laminar junction in relation to capsule shape in the forehoof of standardbreds and thoroughbreds.
        Equine Vet J. 2008; 40: 473-480
        • Lancaster L.S.
        • Bowker R.M.
        • Mauer W.A.
        Density and morphologic features of primary epidermal laminae in the feet of three-year-old racing quarter horses.
        Am J Vet Res. 2007; 68: 11-19
        • Faramarzi B.
        Morphological spectrum of primary epidermal laminae in the forehoof of thoroughbred horses.
        Equine Vet J. 2011; 43: 732-736
        • Medina-Torres C.E.
        • Underwood C.
        • Pollitt C.C.
        • et al.
        Microdialysis measurements of equine lamellar perfusion and energy metabolism in response to physical and pharmacological manipulations of blood flow.
        Equine Vet J. 2016; 48: 756-764
        • Medina-Torres C.E.
        • Underwood C.
        • Pollitt C.C.
        • et al.
        The effect of weightbearing and limb load cycling on equine lamellar perfusion and energy metabolism measured using tissue microdialysis.
        Equine Vet J. 2016; 48: 114-119
      2. Ford MG, Torcivia C, Kowalski A, et al. The effect of mechanical load on lamellar microvascular perfusion in an equine cadaver limb model. In: American College of Veterinary Surgeons Summit, Virtual 2020;33.

        • Steinke S.L.
        • Montgomery J.B.
        • Barden J.M.
        Accelerometry-based step count validation for horse movement analysis during stall confinement.
        Front Vet Sci. 2021; 8: 681213
        • Maisonpierre I.N.
        • Sutton M.A.
        • Harris P.
        • et al.
        Accelerometer activity tracking in horses and the effect of pasture management on time budget.
        Equine Vet J. 2019; 51: 840-845
        • Steinke S.L.
        • Carmalt J.L.
        • Montgomery B.
        Weight reduction and possible implications for the rehabilitation of horses with ambulatory difficulties.
        Equine Vet Educ. 2019; 33: 152-158
        • Hopster K.
        • van Eps A.W.
        Pain management for laminitis in the horse.
        Equine Vet Educ. 2019; 31: 384-392
        • Carteron L.
        • Bouzat P.
        • Oddo M.
        Cerebral microdialysis monitoring to improve individualized neurointensive care therapy: an update of recent clinical data.
        Front Neurol. 2017; 8: 601
        • Spriet M.
        • Espinosa P.
        • Kyme A.Z.
        • et al.
        Positron emission tomography of the equine distal limb: exploratory study.
        Vet Radiol Ultrasound. 2016; 57: 630-638
        • Grundmann I.N.
        • Drost W.T.
        • Zekas L.J.
        • et al.
        Quantitative assessment of the equine hoof using digital radiography and magnetic resonance imaging.
        Equine Vet J. 2015; 47: 542-547